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Abstract. In this paper we describe a methodology to train Support Vector Ma-
chines (SVM) where the regularization parameter (C) is determined automati-
cally via an efficient Genetic Algorithm (Vasconcelos� GA or VGA) in order to 
solve classification problems. We call the kind of SVMs where C is determined 
automatically from the application of a GA a �Genetic SVM� or GSVM. In or-
der to test the performance of our GSVM, we solved a representative set of  
problems. In all of these the algorithm displayed a very good performance. The 
relevance of the problem, the algorithm, the experiments and the results ob-
tained are discussed. 

1   Introduction 

Support Vector Machines have recently received increasing attention from the scien-
tific community due to their underlying mathematical foundation. As opposed to more 
informal (and traditional) alternatives to neural network development, SVMs rely on 
well understood mathematical properties which, in effect, allow us to theoretically 
prove that, for example, perceptron networks (PN) or radial basis function (RBF) 
ensembles are all encompassed by them. Architectural issues such as the number of 
hidden layers and the number of neurons in such layers are dispensed with. A number 
of parameters the user has to heuristically estimate (such as the learning rate in PNs or 
the number of centers in RBFs) are not present. One key issue in this kind of net-
works, however, has to do with the so-called �regularization parameter� which, in 
effect, determines the accuracy of the SVM in terms of possible misclassification of 
sample elements unknown during the training phase. �C�, as of today, has been tradi-
tionally determined on a case basis and, although some prior efforts to automate its 
value do exist [1] there has not been a reliable report of it systematic case-independent 
automated calculation. In this paper we propose the use of evolutionary computation 
techniques which help us solve the problem of C�s determination; particularly, we 
focus on classification problems. In Section 2 we discuss some theoretical issues re-
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garding SVMs, specifically emphasizing the importance of regularization parameter 
C. In section 3 we discuss how the methodology of VGA can be used to train this kind 
of NN and show how to determine automatically the regularization parameter from its 
application to the dual problem. We also argue that this methodology is appropriate to 
solve constrained optimization problems, such as these. In section 4 we present four 
problems we analyzed to show how the GSVM may solve Classification Problems and 
the resulting level of accuracy. Three of these data sets were obtained from the Uni-
versity of California at Irvine Machine Learning Repository (UCI-MLR); a fourth was 
derived theoretically. In section 5 we discuss the experiments and results. Finally, in 
Section 6 we offer our conclusions and point to future lines of research. 

2   Support Vector Machines 

SVM is a supervised neural network that has been used successfully for classification 
and nonlinear regression problems [2][3][4]. In what follows we use the notation �xi� 
and �w� to denote the independent variable vectors and the weight vectors respec-
tively. A training sample ( ){ } N

1iii ,dx ==τ  (where ix  is the input pattern for the ith ex-
ample and id is the target output) represents two classes in the case of pattern classifi-
cation and a set of N independent variables with N dependent variable ( )id  in the case 
of nonlinear regression. 

When attempting pattern classification, the objective is to find a surface that allows 
the separation of the objects in the sample in two classes: the first class should be on 
one side of the surface ( )1=id  and the second class on the other side ( )1−=id . The 
distance between the nearest points of both classes is called the margin of separation 
and the optimal surface is found when that margin is maximized. 

Fig. 1. Transformation from input space to higher-dimensional feature space. 
 

The form of the surface depends of the linear separability characteristics of τ , i. e., 
when τ  is �linearly separable� the optimal surface corresponds to a hyperplane that is 
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called �Optimal Hyperplane� (OHP) and when τ  is �nonlinearly separable�, the opti-
mal surface is not a hyperplane in the input space. The introduction of kernel functions 
is made in order to deal with non-linear decision surfaces. This implies mapping the 
data to a higher dimensional feature space which allows the construction of an OHP in 
this space that adequately separates the two classes. In Figure 1, the class 1 (squares) 
and the class 2 (stars) are non-linearly separable in the input space. In the feature 
space, however, both classes are separated from each other with a hyperplane. 

The kernel functions are used to map vectors in the input space into vectors in the 
feature space. These functions must satisfy certain known conditions to be admissible 
as kernels in a SVM. Specifically they must satisfy Mercer´s condition [5][6]. Many 
functions may be used as kernels [7], but the most popular are: a) Polynomial learning 
machines (PLM), b) Radial-basis function networks (RBF) and c) Two-layer percep-
tron networks (LP) [8]. Since the theory allows for any of the above, we used PLM 
and RBF kernels due to their proven simplicity.  

2.1   Primal and dual forms  

As mentioned above, we want to find the OHP which maximizes the margin of separa-
tion between the two classes that constitute the training set. This gives rise to a con-
strained optimization problem which has to be solved to get the OHP. The form of the 
problem depends on linearly separable characteristics of the training set. The Quad-
ratic Programming (QP) problem for linearly separable patterns is formulated as fol-
lows: 

( ) Nibxwd

wwMin

i
T

i

T

bw

,...,2 1,for    1

:subject to
2
1 

,

=≥+

=Φ

 

(1) 

The solution of this problem requires the search of w and b that minimize an objec-
tive convex function subject to a set of linear constrains. In the case of nonlinear pat-
terns, a set of slack variables is introduced { } N

1ii =ξ  in order to control the level of mis-
classification for some elements of τ  [9]. In this case the QP problem is: 
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Equations (1) and (2) correspond to primal problems for classification of linearly 
and nonlinearly separable classes, respectively. However, it is possible to define the 
dual problem. The optimal value for both problems is the same [10]. In both prob-
lems, (1) and (2), the solution of the dual form corresponds with the Lagrange Multi-
pliers (LMs) of the QP problem and the LMs different from zero correspond to the 
support vectors [11]. The dual form for nonlinearly separable patterns is: 
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The dual form for separable patterns is essentially the same, except for 
N,...,1i,i =α  which are not bounded; here, C is the upper bound on α i. It is impor-

tant to note that a kernel is included in the dual form (K(ּ,ּ)), a fact which permits us 
to construct a decision surface that is nonlinear in the input space but whose image in 
the feature space is linear. 
 
Regularization Parameter. The upper bound C for the LMs in a nonlinearly separa-
ble QP problem is known as �Regularization Parameter� [12]. This parameter controls 
the trade-off between the complexity of the machine and the level of misclassification 
allowed. When C is low, a higher proportion of errors is allowed in the solution, while 
few errors are permissible for high C values. 

 
Automatic determination of C via GA. �C� is traditionally selected by the user. It 
may be estimated experimentally or analytically [13]. The analytical option relies on 
the calculation of Vapnik-Chervonenkis (VC) dimension for the problem at hand. VC 
dimension is, however, extremely difficult to calculate in practice and, in effect, disal-
lows the analytical approach. Therefore, the main goal of this paper is to propose a 
method to estimate automatically the optimal value of this parameter using a GA with-
out the practical limitations mentioned above. In our approach C�s value is in the 
genome and induces a new constraint. This possibility is exclusive of the evolutionary 
approach (and perhaps a few other meta-heuristics) and explains our choice. 

3   Genetic Algorithms 

GAs are nowadays commonly used to solve complex optimization problems [14]. It is 
natural to tackle the problem of finding a good value of �C� with one. In what follows 
we briefly discuss the methodology. 

3.1   Training a SVM using GAs 

Several commercial optimization libraries can be used to solve the quadratic pro-
gramming problem. However, these libraries are of limited used. The memory re-
quirements of the QP problem grow with the square of the size of the training sample 
[15]. For that reason, in real-life applications, the QP problem cannot be solved by 
straight forward use of a commercial optimization library. Some optimization tech-
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niques can be directly applied to QP problems. However, many of them require that 
the kernel matrix is stored in memory, implying that the space complexity is quadratic 
in the sample size. For large size problems, these approaches can be inefficient, and 
should therefore be used in conjunction with other techniques [16]. In this paper, we 
use GAs to tackle the QP problem.  

 
GAs as optimization tool. The application of GAs to SVMs differs substantially from 
previous approaches to train NNs because the dual QP problem presented above is 
used to find the support vectors directly. In previous experiences the support vectors 
have been determined from the application of Lagrange Multipliers which neatly ad-
just to this problem (which satisfies Karush-Kuhn-Tucker conditions) but which are 
not applicable to search for �C� [13]. In fact, GAs are used here to solve the con-
strained QP. One advantage of using GAs for this kind of problems is that restrictions 
are not imposed in the form of the objective function: neither the objective function 
nor the constrains of the problem must be derivable in order to solve de problem prop-
erly. 

3.2   Relative optimality of VGA 

Although GAs were originally designed to solve unconstrained optimization problems, 
they can be adapted to tackle the constrained cases [17] as will be shown.  
    The first step is the selection of the population�s size. In this work we considered a 
population of size P = 100 for all of the problems; the initial population was randomly 
generated; weighted binary fixed point representation was used. Each individual 
represents a LM (αi, i=1,...,N), where N is the number of points in the training set for 
the dual SVM problem. Every variable is to be expressed in fixed point format with 
one sign bit (0→+; 1→-), 8 integer bit and 20 decimal bits as shown in figure 2.  

 
 
 

Fig. 2. Fixed point representation 

With this representation:  �28+2-20 ≤ αi ≤ +28-2-20.  The genome�s size is (N+1)x29, 
where N is the number of training data (N) and the (N+1)th point corresponds to the 
value of C.  Once the initial population is generated, VGA [18] is used with Pm=0.05 
(probability of mutation) and Pc=0.9 (probability of crossover). The evaluation func-
tion is constructed following the methodology of SVMs but we modify it by trans-
forming the constrained original problem to a non-constrained one. To do this, we 
have chosen the penalty function (F(x)) [19]: 
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where Z is a large constant [O(109)], t is the number of constraints, s is the number of 
these which have been satisfied and f(x) corresponds to the fitness at point x. The GA 
operation was terminated after 250 generations.  

4   Training SVMs for classification problems 

We have applied the methodology to the problem of determining whether an object 
from a sample belongs to one of two groups. This may be easily extended to N groups 
[20]. SVMs have traditionally been designed to deal with binary classification, but a 
lot of real world problems have more than two classes. In this paper we deal with 
both, binary and multi-class problems. In the case of multiple class problems, one-
versus-one classifier and one-versus-all classifier [21] were used. In one-versus-one 
classifier, a SVM model is built for each pair of classes. This results in p(p-1)/2 (p is 
the number of classes in a specific problem) SVM classifiers. In one-versus-all classi-
fier, p classifiers are used. The ratio between the number of classifiers in one-versus-
one classifier and one-versus-all classifier is (p-1)/2, which is significant when p is 
large. On the other hand, all N observations are used in each classifier in one-versus-
all classifier. 

4.1 Problems 

A set of classification problems is presented here in order to illustrate the classifica-
tion efficiency of the method. The set of problems are:  

 
Lung Cancer Database. The data for this problem describes 3 types of lung cancers. 
The Authors give no information on the individual variables nor on where the data 
was originally used1. A total of 32 instances are considered in the original data. Since 
it has 5 missing attributes only 27 were considered. The data have 56 predictive nomi-
nal (values 0-3) attributes. Three classes are considered in this problem with: 9 obser-
vations for class 1, 13 for class 2 and 10 for class 3. It is important to mention that the 
problem has few instances (27) and a lot of attributes (55). For this reason we decided 
to use natural splines [22] to interpolate and enrich the data. The new (interpolated) 
data set consisted of 100 objects: 85 were used for training and 15 for testing.  
 
Wine Recognition Database. These data are the result of a chemical analysis of 
wines grown in the same region in Italy but derived from three different cultures2. It 
corresponds to three types of wines with a total of 178 instances: 59 for wine class 1, 
71 for class 2 and 48 for class 3. A total of 13 continuous attributes for each object 
was considered.  
 

                                                           
1 UCI-MLR [http://www.ics.uci.edu/~mlearn/MLRepository.html] 
2 Idem 
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Iris Plant Database. This is perhaps the best known database to be found in the pat-
tern recognition literature. The data set contains 3 classes of 50 instances each, where 
each class refers to a type of iris plant3. One class is linearly separable from the other 
two, the latter are not linearly separable from each other. Four attributes are in this 
database: sepal length, sepal width, petal length and petal width (all of these measured 
in cm).   

 
Functions. Two classes are defined in this problem with the help of algebraic and 
trigonometric functions. A total of 88 points with 5 attributes was defined for each 
class, where these values were randomly generated. The range for each point was 
π][0, . The functions sin(.), cos(.), tan(.), ln(.) and sqrt(.) were applied to attributes 1, 

2, 3, 4 and 5, respectively, for each instance in the case of class 1. Likewise, the func-
tions senh(.), cosh(.), tanh(.), exp(.) and sqr(.) were applied to each object of  class 2. 
Classes 1 and 2 were defined as the sum of their respective functions and the outputs 
for class 1 and 2 were set to 1 and �1, respectively. The number of objects in the sam-
ple was 176: 150 for training and 26 for testing. We believe the contribution of these 
functions is to prove the accuracy of this method in functions that have not any par-
ticular pattern, since the values for the selected attributes were randomly generated. 

5   Experiments and Results 

In the column �problem� of Tables 1, 2, 3 and 4 the codes i_j correspond to the results 
of one-versus-one classifier for i=1,2 and j=2, 3 (i=1 and j=2 in the case of Table 4). 
In the case of one-versus-all classifier, i=1,2,3 and j=A (�All�). For instance, 1_2 
means �class 1 vs. class 2�; 3_A means �class 3 vs. all�, etc. 

5.1   Lung Cancer 

Because 3 classes are considered in this problem, one-versus-one classifier is used in 
order to test the methodology proposed here. The result of the application of this clas-
sifier is shown in Table 1. Results were:  91.2% of average accuracy for training data 
and 88.9% for test data where splines were applied and 92.3% of average accuracy 
when the natural spline interpolation was not applied. 

5.2   Wine Recognition 

One-versus-one and one-versus-all classifiers were used in this problem. As men-
tioned above, 3 classes are considered in this problem. Hence, this results in 3 SVM 
classifiers for each alternative. The comparison between them is shown in Table 2. 
The accuracy of both classifiers is good, but the one-versus-one classifier has a better 
accuracy with an average of 93.6% for training data and 94.3% for test data. For one-

                                                           
3 Idem 
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versus-all classifier the average accuracy for training data is 80.2% and 84.6% for test 
data. 

 
Table 1. Results for Lung Cancer Classification Problem 

 

Table 2. Results for Wine Recognition Problem 

 

5.3   Iris Plant 

One-versus-one and one-versus-all classifiers were used for this recognition problem. 
The results for this classification problem are shown in Table 3. Because one of the 
classes is linearly separable, one-versus-one classifier offers a better accuracy than 
one-versus-all classifier. The reason is that the linearly separable class (iris setosa) 
shows a 100% accuracy when compared with each of the other classes. The average 
accuracy for training set was 96.1% and for testing set was 93.3% in the case of one-
versus-one. In the case of one-versus-all, 90.9% for both training sample and testing 
sample. 

5.4   Functions 

This is a binary classification problem. The results are shown in Table 4. The accu-
racy for training set was 97.7% and 100% for testing set. 
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Table 3. Results of GSVM for Iris Plant Classification Problem. 

 

Table 4. Results for the Functions problem. 

 

6   Conclusions 

A GSVM classifier is presented in this paper. The application of this algorithm to a set 
of test problems resulted in a very good performance. The application of a VGA al-
lows us to tackle an extremely complex constrained optimization problem (if judged 
from the traditional point of view) in a very simple and straightforward way. Consider 
that every one of the data vectors determines a constraint. For example, in a typical 
problem the number of constraints is larger than 150. VGA has to determine the band 
of feasible values out of a potentially infinite set. However, the most important issue is 
that the value of the regularization parameter was quasi-optimally found trough the 
algorithm rather than by hand. The reported work seems to indicate that VGA (along 
with proper constraint handling) is an efficient way to optimize C by including it in the 
genome. In the past, the difficulty of properly determining the value of C was usually 
interpreted, simply put, as changing one typical problem in NNs (the determination of 
the most adequate architecture) into another, perhaps more difficult, one (the best 
determination of the regularization parameter). If C�s determination may be automated 
as we have shown, then the theoretical advantages of SVMs may be fully exploited 
and the negative criticism mentioned above may be eliminated. 
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